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1. Introduction

Detecting edges is an important first step in the solution of many

image analysis tasks. Edges are used primarily to aid in the segmentation

of an image into meaningful regions, but are also extensively used to

compute relatively local measures of textural variation (which, of course,

can subsequently be used for segmentation purposes). Although there has

been a considerable amount of research concerning quantitative models for

edge detection (e.g., Nahi [11, Modestino and Fries [21, Shanmugan et Al

[3], Cooper and Elliot [4]), very little work has been devoted to

developing such models for images described by texture models. This paper

addresses the problem of detecting edges in what are cailed macro-textures,

i.e., cellular textures where the cells, or texture elements, are

relatively large (at least several pixels in diameter).

Once edges are detected in texture regions, they can be used to

define texture descriptors in a variety of ways. For example, one can

compute "edge per unit area" (Rosenfeld [5)). More generally, one can

compute first-order statistics of edge properties [6,71, such as

orientation, contrast, fuzziness, etc., or higher-order statistics which

can measure the spatial arrangement of edges in the texture. Such

statistics can be computed from generalized cooccurrence matrices (Davis

et a] [8,9]) which count the nuiler of times that specific pairs of edges

occur in specific relative spatial positions. Clearly, the utility of -V.

such tools depends on the reliability with which edges can be detected

in textures.

This paper is organized as follows: Section 2 contains a description



-of the imago texture models which will be considered. These models are

one-dimensional, since the edge-detection procedures, described in

Section 3, are one-dimensional. Section 4 contains derivations of the

expected value and variance of the edge operator described in Section 3

anddescribes optimal edge detection procedures based on that analysis.

Finally, Section 5 contains conclusions and a summary.
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2. Texture Models

There are a large number of formal image texture models which have

been proposed and studied during the past few years. These can be

broadly classified as pixel-based and region-based models (Ahuja [101).

All of these models treat textures as a two-dimensional phenomena, which

is appropriate for many applications (e.g., some medical applications,

geographical applications). However, for other applications, regarding

textures in this way is inappropriate; one should, instead, model the

texture as a surface in space with certain reflectance properties. An

image of such a texture is then determined by the spatial disposition of

the surface and the viewer, the frequency response of the viewer, and the

positions of all light sources. Horn [11] should be consulted for an

introduction to this branch of image science. Such models will not be

considered in this paper.

Pixel-based models are ordinarily time-series models or random field

models. Time-series models have been investigated by McCormick and

Jayaramamurthy [12], and by Tou et al [13]. Random field models are

discussed in Wong [14], and Pratt et al [15]. For more references, see

[16-17].

This paper will be concerned with region-based texture models. In

particular, we will consider one-dimensional models which are related to

two-dimensional cell structure models. Cell structure models describe

textures as mosaics, and can be generated by the following two-step

process:

1) A planar region is tessellated into cells, ordinarily convex.



2) Each cell is independently assigned one of m colors, C1 ,..., cm

using a fixed set of probabilities, pl ,...,pm.

This process partitions the original region into subregions, which

are the unions of cells of constant color. If A is the original region,

then A1,... Am are the subregions. Note that the simple colors can be

replaced by more complex coloring processes, e.g., the grey levels in a

cell can be chosen according to a given distribution, d, which is itself

chosen from a set of distributions, D, according to the given probability

vector, P. Ahuja [101 contains an extensive survey of such models.

We will consider a similar class of one-dimensional models. A

texture model is an ordered pair <P,C> where

1) P is a cell width model, which successively drops intervals

along a line, and

2) C is a coloring model, consisting of coloring processes,

ci,...,c m , and probabilities, P1,.,pm. As P produces cells, C colors

the cells.

If we let w be the random variable corresponding to cell width, then

the following are examples of cell width models:

1) Constant cell width model

P c(w) = 
w

c wb

2) Uniform cell width model

I1/b O<w<b

P u(w)
0 w> b
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3) Exponential cell width model

Pe(w) = A exp lw.

To simplify the analysis, we assume that there are only two coloring

processes, c1 and c2. Therefore, there is only one relevant probability

for chgosing cell colors, which will be denoted by p. Each coloring

process colors a cell by choosing the intensity of each point in that cell

independently from a normal distribution of intensities. The distributions

are denoted N(mi,vi), i=1,2, with mean mi and variance v.

Notice that given a one-dimensional cell structure model, <P,C>, one

can derive a one-dimensional component structure model, where a component

is a coitiguous set of identically colored cells. For example, for the

cell model <PcC> the corresponding component model has components whose

lengths are distributed geometrically. Of course, in a component model,

the various colors alternate, since by definition two adjacent components

must have different colors. The component model is required to determine

the prior probabilities of various types of pixels (see Section 4).



3. A One-Dimensional Edge-Detector

In this section we will describe a simple, one-dimensional edge

detection procedure. There are a variety of reasons for considering

one-dimensional edge detectors:

1) Computational efficiency on conventional, sequential computers.

Since we are interested in detecting edges for the purpose of describing

texture, it is important that the edge detection process be made as

efficient as possible.

2) Suitability for implementation on special-purpose image

processing hardware. There has been a significant amount of research

and development of image processing hardware over the past few years

(CLIP [18], PICAP [19]). One-dimensional edge detectors can be easily

implemented on, for example, series-parallel machines, where a row of

processors "scan"' and process the image one row at a time.

3) Mathematical tractability. Direct analysis of two-dimensional

edge detectors is complicated by many factors, including the mathematical

complexity of most two-dimensional cellular texture models and the

greater variety of edge-like features in two dimensions.

The class of edge operators which we have considered is based on

differences of averages between adjacent, symmetric one-dimensional image

neighborhoods. Specifically, let f be a one-dimensional image function.

Then the edge operator is:

k
e k (i) =(1/k) (f(i-j)-f(i+j))

j=1

=(1/k) (LS(i)-RS(i))



where

k
LS(i) = 1 f(i-j) and

j=1

k
RS(i) = Y f (i+j)

j=1

By noticing that

ek(i+1) = (1/k) [LS(i)-f(i-k )+ f(i)-RS(i)+ fli+1)-f(i+k+l)]

we see that ek can be computed in a constant number o,^ operations per

picture point, independent of k, on a conventional sequential computer.

The operator ek is used to detect edges by the following three step

process:

1) Compute ek(i) for all points i.

2) Discard all i with lek(i)I <t. This thresholding step is intended

to discriminate between points which are edges of texture elements and

points which are in the interior of texture elements, but far from edges.

3) Discard all i with lek(i)f < lek(i+j)I, lii <d. This non-maxima

suppression step is intended to discriminate between points which are

edges and points which are interior to texture elements, but are close

to edges.

Step 3 is crucial since ek gives high response not just at edges,

but also near edges, so that thresholding alone would result in a cluster

of detections about each true edge point. The above procedure involves

three classes of texture pixels:

1) edge pixels, which are pixels located directly at the edges

between texture elements;

2) near-edge pixels, which are located within distance d of an



edge pixel and are discarded by the non-maxima suppression step; and

3) interior pixels, which are located distances greater than d

from the nearest edge pixel, and are ordinarily eliminated by the

thresholding step (but may be eliminated due to proximity to above

threshold, near-edge pixels).

Optimizing the above edge detection procedure involves choosing k,

t and d in order to minimize the probability of error--i.e., minimizing

the frequency of discarding edge points, and not discarding near-edge

and interior pixels. This paper considers the edge-interior discrimination

problem only. Therefore, we will be concerned with choosing values for k

and t only. The complete edge detector, including the non-maxima

suppression step, is discussed in Davis and Mitiche [20].

A



4. Analysis of ek

In this section we will derive the expected value and variance of

ek at edges and at interior points. We will regard an interior point

as a point whose distance from the nearest edge is greater than k.

Expressions for the prior probabilities of edge and interior points are

developed. Finally, by assuming that ek is normally distributed at

edges and interiors, a minimum error thresholding procedure for

distinguishing between edge points and interior points is developed.

4.1 The expected value of ek9 E[ek]

The definition of ek was originally given for a discrete function f.

If f is continuous, then we can redefine ek as

ek(i) = I/k I-k f(i+j)dj- JO f(i+j)dj

Then, the expected value of ek is

k

E[e (0) = I/k E~f(i+j)ld- Efijldj]

If i is an interior point, then all points f(i+j), -k<j <k are colored

by the same process. Therefore, the expected values are all the same,

and thus E[ek(i)ji is an interior point] = 0.

Now suppose that i is an edge point, and assume, without loss of

generality, that the cell to the left of i, C., is colored by process cI,

and that the cell to the right of i, Cr, is colored by by process c2, and

that m1 > m2. Let wI be the width of Ct and wr be the width of Cr (see

Figure 1). We will also make the simplifying assumption that the points

L A



to the left of C,, (or the riqht of C,.) ar2.' individually colored with

processes c 1 and c 2 with probabilities p and (1-p). For k much greater

than w,, or Wr' this assumption is not unreasonable. As w l or w r

approaches k, it is more likely that only one cell will be found to the

left of C - or the right of Cr . However, large cells are ordinarily less

likely than small cells. Letting a = pm 1 +(1-p)m 2 9 we can then write

E[e k(i)l =1/k [(fk (M Iw t+a(k-wt)P(wt)dw.+ f m 1kP(w,)dw.)

10' k

k 0[(m 2w r +a(k-w r)P(w r)dw r +f m 2kP(w r)dwr)]
0 k

Since w f and w r are drawn from the same distribution, terms can be grouped

to obtain

E[ek(i)] = 1/k[ (m 1-m2 )wP(w)dw+f (m I- m2 )kP(w)dwl

= 1/k I (m 1 -m 2)w0Oj (m1-m2 )wP(w)dw + kf~ (i-m 2) kP(w)dw]

fk

where

w f wP(w)dw.

4.2 The variance of e k

From the definition of e k9 we have

~-k
Var [e k(')] Var Li/k Jo f(i-j)-f(i+j)dj]



Suppose i is an interior point and is in a cell colored by cI. Then

Var[ek(i)] = (1/k2 ) k2vI

= 2v1/k

If i is an interior point and is in a cell colored by c2, then

Var[ek(i)] = 2v2/k.

Next we will consider the case of i, an edge point. Let

k
LS(i) = O f(i-j)dj

k
RS(i) = J f(i+j)dj

Then

ek(i) = 1/k (LS(i)-RS(i))

We will derive expressions for Var[LS(i)] and Var[RS(i)]. There are two

cases to consider:

1) w or w > k

2) w. or wr < k

If wt>k, then the variance of LS(i) is kvI. If wr > k, then the variance

of RS(i) is kv2 .

Next, suppose we<k. We will assume that of the k-w. pixels not

in CZ 1 pixels are colored by process cI and f2= (k-w/)-i 1 pixels are

colored by process c2, where e is a random variable described by a

binomial distribution with parameter p and f2 is a random variable

described by a binomial distribution with parameter (1-p).

In general, if y is the sum of a random number, n, of independent



experimental values of a random variable x, then

Var[y] = E[n] Var~xJ+ (E[x]) 2 Var[n]

Thus, if w is a fixed value less than k,

Var[LS(i)lwt <k]

2
w~vI+E[F1]vI+m Var[Z1 ]

+EfC 2Iv2 +m2 Var[1 2]

with

E[ZI] = (k-w )p

E[t 2] - (k-w,)(1-p)

Var[Z 11 = Varfe 21 = (k-wt) p(1-p)

A similar expression can be obtained for RS(i).

Combining the cases w >k and w < k, we can write

Var[LS(i)li an edge]

2 [f kv 1P(w C)dw~k2

, k
+ "0 (w4,v + (k-wC)(pvl + (1-p)v 2 )

(k-w p(1-p)(1 ,0 + ni) P(w.)dw, 1

Again, a similar expression is obtained for RS(i). Since

Var[ek(i)J = 1/k2 [Var[LS(i)]+Var{RS(i)]J

Since wz and wr are drawn from the same distribution, we group terms and



P and of an interior point, pi. An edge point is defined to be a point

on the image line which is no more than a fixed distance d away from a

true edge. We choose d.> Oso that pi 0. An interior point, as before,

is a point that is at least distance k away from a true edge.

In the following we will consider, without loss of generality, only

points within c1-components. Given that a point is picked at random,

let h be the probability density function for the distance y, to the next

edge (the forward edge or edge on the right). From general results on

random incidence into a renewal process we have [211

h(yl) = (1-prob[r<yll)/E[r)

The function h is also the probability density function for the distance

Y2 to the backward edge (the nearest edge on the left of the point).

Then we have

hj(yl,y2) = h(yl)hc(Y 2/yI)
where hc is the conditional probability function for and hj is the

weehc y2  h i h

joint probability function for yl and Y2 " If yl and Y2 are independent,

then

hj(y 1,y2) = h(yl)h(y2)

From the above we now can derive expressions for the priors

P.= j ;hj(yY2 dydy2

d d

For the discrete case we have

L



Pi = Z h(yly 2 )
Y1=k Y2=k

Pe = 1- I I h(y1,y2 )yCd+1 Y2=d+1

The set of interior points and the set of edge points are not complementary

in the sense 'hat they do not form a partition of the set of all points of

the image line. Thus it is necessary that we normalize pe and pi.

Pe Pe/(Pe + Pi)

Pi Pi/(Pe + Pi)

Examples

1. Geometric distribution of component widths. Assume for simplicity

that b=1. Then
Y1

h(y1) = (1-p)(1- x (1-p)py -')

y=1

= (1-p)p

Thus

Prob[y 1  k] = I (-p)

Yl=k

p (l-p)p
Y1=k

p P k-1 k



E[r] = E[n]E[w]

Var[r] = E[n] Vartw] + (Elwj) 2 Var[n]

If w is continuous and if f and g are the probability density functions

for w and r, then

gT(S) = p T(fT

where fT and gT are the exponential transforms (s-transforms) of f and g

respectively, and p is the z-transform (discrete transform) of pZ"

If w is discrete, then the above expression holds with f and g

being the probability mass functions for w and r, and fT and gT being

their respective z-transforms. By taking the inverse transforms one can

obtain the distribution of component widths.

Examples

1. Constant distribution of cell width. For the constant cell width

model, g is described by the geometric probability mass function

r

(1-p) pb for r = b,2b,3b,...

g(r) =

( 0 otherwise

E[r] = b/(1-p)

Var(r] = b2 p/(1-p)2



2. Exponential distribution of cell width. For the exponential model

with parameter X~, g is described by the probability density function

g(r) = (1I-p) X Exp(- (1-p) Xr)

Thus component widths are still exponentially distributed and

E~rJ = 1/((1-p)X)

3. Uniform distribution of cell width.

E[rJ = b/(2(1-p))

Var~r] b/(4( 1-p))
(113 + pA1-P))

and

g(r) = e (p/b)r g'(r)

where

(-1) npn e np r- n n]
L LSb r)

e n=O b+ 1  rI~n+1) b(n+1)

and

S 0 0 <t <k
k 1 t >k

is the unit step function.

In order to perform minimum error thresholding on a given image

texture, it is necessary to know the prior probabilities of an edge point,



finally obtain, for edge points,

Vartek(i)Ii is an edge]

1/k2 [k(v1+v2) fk P(w)dw

k

+ (vl+V 2) 0 wP(w)dw

k

+ 2(pv1+(I-p)v 2) (k-w)P(w)dw

1p(1-P)(m+m) j

+ 2p(2-p)(m1+m 2 J (k-w)P(w)dw]

For ti~e exponential model with p= .5, for example, we find that

(ml-m 2)(l-e- )

Elek(i)fi is 
an edge) =

k Xk

and i 2 +m2

Varlek(i)li is an edge] k +/2

Other simple expressions can be obtained for the constant and uniform

models.

In order to derive a minimum error threshold for discriminating

between edge and interior points using ek, it is necessary to:

1) determine the prior probabilities of edge and interior points,

* and

2) specify a form for the distribution of ek at edges and at

interior points.

U



To compute the prior probabilities of edge and interior point, we

must derive a component model from the cell width model. A component

is a set of connected, identically colored cells. Let a c1-component

(c2-component) be a component whose cells are colored by process c1 (c2 ).

Then, the length of a component is defined to be the number of cells

that compose it, and the width of a component is its actual measure.

In the following we will show how a component model can be derived

from a cell model. As mentioned before, the cell coloring process is

a Bernoulli process which selects coloring process cI with probability p

and coloring process c2 with probability (1-p). Therefore, the

cI-c omponent and c2-component lengths are random variables described by

a geometric probability mass function. In the following analysis we will

consider only cl-components and simply refer to them as components.

The same analysis will hold for c2-components.

If n is the random variable that represents component length and

pt(n) is the probability mass function for it, then

p (n) = (-p) pn-

Now, if w and r are random variables that describe the cell width

and the component width respectively, then r is the sum of a random

number n of independent identically distributed experimental values of x:

n'

Expressions for the expected value and variance of r can be obtained in

terms of the expected value and variance of n and w:



Since the geometric distribution is memoryless, y1 and Y2 are independent

random variables, and

Pi = Probjyl > k, Y2 >k] =k k = p2 k- Y2

= I-p2(d+1)

Normalizing,

Pi = P2k/(p2k + - p2(d+1))

Pe = I-Pi

2. Exponential distribution of component widths. Let X be the parameter

of the distribution. Then

1- (1- Exp(-Xyl))
h(yl) = Exp(__Yi)

Prob[y 1~k] = Exp(-Xk)

The exponential distribution is also memoryless so that Yl and Y2 are

independent. We then have

Pi = Exp(-2Xk)

Pe = 1- Exp(-2dX)

Normalizing,

P = Exp(-2Xk)/(Exp(-2Xk) + 1 -Exp(-2dX))

Pe = 1-p i

-Q .



In order to use pe' Pi and the expected values obtained above for

minimum error edge detection, we will make the assumption that ek is

normally distributed at edge points as well as interior points. More

precisely, we assume that ek is N(O,2v/k) at interior points and

N(EfekjVarfeki) at edges. This assumption is certainly valid for

interior points since, in this case, LS and RS are each the sum of k

independent experimental values sampled from the same normal distribution.

At edges,'each of LS and RS is the sum of k1 independent experimental

values drawn from the normal distribution that represents one of the

coloring processes and k2 independent experimental values from the normal

distribution that describes the other coloring process. The sum of kI

and k2 is k, but kI and k2 will in general vary from point to point on

the image line.

The assumption of normality of ek at edges will hold well if the

variances of kI and k2 are low. This means that in the neighborhood of

any edge point on the image line the number of pixels colored by either

process remains almost constant. For example, this is trivially true for

the constant distribution of cell widths, with k<b, b being the width of

a cell. In this extreme case, kI=k and k2 
= 0 or vice versa. However,

if k and k2 have a high variance, then the normality assumption will not

hold very well.

Thus, an important factor for the validity of the assumption is the

variance of cell widths. Ideally, this variance should be small; however

another property that would tend to make the assumption hold well is that

the image model be more likely to contain cells whose widths are close to

k. This will keep the probability that the neighborhoods Ct and Cr extend



over more than one cell quite low.

Given the normality assumption, the following two step process can

be used to compute an optimal k and t for a minimum error edge detector.

1) For a range of k, find the minimum error threshold for

discriminating between edges and interior points. Since both e k at

edges and ek at interior points are modeled by normal distributions with

known parameters and priors, this is straightforward. Let er(k) be the

probability of error for the minimum error threshold for ek and let t(k)

be the threshold.

2) Choose k such that er(k) < er(k'), for all k' considered. Then

(k,t(k)) define the minimum error edge detector.

Figure 2 shows plots of er(k) as a function of k for the three cell

width models presented in Section 2. Notice that the value of k which

minimizes total errors is the mean cell width for all three models. The

reason that the curves tend to level off at high k, rather than rise to

a high error, is that as k becomes very large, the prior probability of

interior points, pi, approaches zero. For very high values of k, the

near zero value of pi causes the programs which compute minimum error

thresholds to become unstable. Therefore, we arbitrarily stopped

computing er(k) for k> 20. Figure 3a-e shows an example of the effect

of k on the performance of ek. Figure 3a contains a checkerboard texture

with b =16, p =.5, m =30 , m =20, and v =Vv= 0. Figure 3b shows the

true edges, while Figures 3c-e show the results of applying eVk~ k=8, 16

and 24, thresholding at the minimum error threshold for the appropriate k,

and then performing non-maxima suppression across 8 pixels. Note that the

results for the optimal value of k (16) are significantly better than

choosing k too small (8) or too large (24).



5. Discussion

This paper has discussed the problem of detecting edges in cellular

textures. A general edge detection procedure was proposed. This procedure

involved applying an edge sensitive operator to the texture, and then

thresholding the results of the edge operator and finally computing "peaks"t

from the above threshold points. This paper concentrated on the thresholding

process and developed a minimum error thresholding procedure based on an

analysis of the edge operator e. The thresholding procedure assumed

that e k was normally distributed at edges and at interior points.

The peak selection step was not considered in this paper. It is

discussed in [20], which also includes examples of choosing optimal edge

detectors for real textures, and a comparative classification study using

optimal and suboptimal edge detectors.
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